
abqcy
Release 0.0.5

WANG Hailin

May 18, 2023

CONTENTS

1 Table of Contents 3

2 Indices and tables 13

Python Module Index 15

Index 17

i

ii

abqcy, Release 0.0.5

Write Abaqus Subroutines in Cython.

• GitHub repository: https://github.com/haiiliin/abqcy

• PyPI: https://pypi.org/project/abqcy

• Documentation: https://abqcy.readthedocs.io

• Read the Docs: https://readthedocs.org/projects/abqcy

• Bug report: https://github.com/haiiliin/abqcy/issues

CONTENTS 1

https://github.com/haiiliin/abqcy
https://pypi.org/project/abqcy
https://abqcy.readthedocs.io
https://readthedocs.org/projects/abqcy
https://github.com/haiiliin/abqcy/issues

abqcy, Release 0.0.5

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Getting Started

abqcy allows you to write your Abaqus subroutines in Cython. It provides a command line tool to compile your Cython
code into an object file (.obj) that can be used by Abaqus.

1.1.1 Installation

You can install abqcy with pip:

pip install abqcy

or install it from source:

pip install git+https://github.com/haiiliin/abqcy

1.1.2 Environment Setup

abqcy requires a working Abaqus installation with user subroutines enabled. Make sure the abaqus command is
available in the command line, otherwise you need to create a new system environment variable ABAQUS_BAT_PATH
and set it to the path of the abaqus.bat file.

abqcy uses Cython to compile your Cython code into a C source file (.c). In order to compile the C source file into an
object file (.obj) that can be used by Abaqus, the abaqus make command is used (it uses the MSVC cl compiler).
Since the compiled .c file requires the Python headers and libraries, abqcy will try to find them automatically and
update the INCLUDE and LIB environment variables. If it fails to find them, you need to update the INCLUDE and LIB
environment variables manually.

1.1.3 Usage

Compile the Subroutine

You can now write your Abaqus subroutine in Cython, simple scripts can be found in Examples.

Note: In order to not mess up with the Cython declarations, you can add a companion .pxd file with the same name
as your Cython .py or .pyx file, and put the Cython declarations in it. If you are not comfortable with keeping two
files, you can just use the .pyx file with the Cython declarations.

3

https://cython.org/
https://cython.org/

abqcy, Release 0.0.5

See Examples for detailed examples.

After you have written your subroutine, you can compile it with the abqcy command:

abqcy compile <path-to-your-subroutine>

This will compile your subroutine into a C source file (.c) and a C header file (.h), and then they will be compiled into
an object file (.obj) that can be used by Abaqus. These files are in the same directory as your subroutine.

Now you can use the subroutine in Abaqus, like:

abaqus job=Job-1 input=<model.inp> user=<subroutine>

Run an Abaqus Job, Post-process and Visualize the Results in a Single Command

You can use the abqcy run command to run an Abaqus job with your subroutine, post-process the results and visualize
them in a single command:

abqcy run <script-or-inp> --user=<subroutine> --job=<job-name> --output=<output-dir> --
→˓post=<post-process-script> --visualization=<visualization-script>

where:

• script-or-inp: a Python script (.py) file using the abaqus cae command to create the input file (.inp) or
an input file (.inp) to run.

• subroutine: a Cython/Python file (py or pyx) or any other file that can be used by Abaqus as a user subroutine
(.f, .for, .c, .cc, .cpp, .cxx). When using a Cython/Python file, the abqcy compile command will be used
to compile it into an object file (.obj) before running the job.

• job-name: the name of the job to run. Defaults to the name of the input file.

• output-dir: the directory to store all the output files including models, subroutines, scripts, results, etc. De-
faults to the current working directory.

• post-process-script: a Python script (.py) file to post-process the results using the abaqus cae command.

• visualization-script: a Python script (.py) file to visualize the results executed by the current Python
interpreter.

1.2 Examples

Below are some examples of how to use the library. To compile the examples into an object file (.obj) that can be
used by Abaqus, you can run the following command:

abqcy compile <path-to-your-subroutine>

Note: It shoule be noted that temporary variables do not required to be typed in Cython excepted for integers. In the
following examples, the cython.infer_types directive is used to infer types of untyped variables in function bodies
including integers. This directive does a work similar to the auto keyword in C++ for the readers who are familiar
with this language feature. It can be of great help to cut down on the need to type everything, but it also can lead to
surprises.

See Determining where to add types for more information.

4 Chapter 1. Table of Contents

https://cython.readthedocs.io/en/stable/src/quickstart/cythonize.html#determining-where-to-add-types

abqcy, Release 0.0.5

1.2.1 Example: Elastic umat subroutine

This example shows how to write an Abaqus elastic umat subroutine in Cython.

1 import cython
2

3

4 cdef extern from "<aba_for_c.h>":
5 pass
6

7

8 @cython.infer_types(True)
9 cdef extern void umat(

10 double *stress, double *statev, double *ddsdde, double *sse, double *spd,
11 double *scd, double *rpl, double *ddsddt, double *drplde, double *drpldt,
12 double *stran, double *dstran, double *time, double *dtime, double *temp,
13 double *dtemp, double *predef, double *dpred, char *cmname, int *ndi,
14 int *nshr, int *ntens, int *nstatv, double *props, int *nprops, double *coords,
15 double *drot, double *pnewdt, double *celent, double *dfgrd0, double *dfgrd1,
16 int *noel, int *npt, int *layer, int *kspt, int *jstep, int *kinc,
17):
18 E, nu = props[0], props[1]
19 lam = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
20 G = E / (2.0 * (1.0 + nu))
21

22 for i in range(3):
23 for j in range(3):
24 ddsdde[6 * i + j] = lam
25 ddsdde[6 * i + i] += 2.0 * G
26 ddsdde[6 * (i + 3) + (i + 3)] = G
27 for i in range(6):
28 for j in range(6):
29 stress[i] += ddsdde[6 * i + j] * dstran[j]

1 import cython
2

3

4 @cython.infer_types(True)
5 def umat(
6 stress, statev, ddsdde, sse, spd, scd, rpl, ddsddt, drplde, drpldt, stran, dstran,
7 time, dtime, temp, dtemp, predef, dpred, cmname, ndi, nshr, ntens, nstatv, props,
8 nprops, coords, drot, pnewdt, celent, dfgrd0, dfgrd1, noel, npt, layer, kspt,
9 jstep, kinc,

10): # fmt: skip
11 E, nu = props[0], props[1]
12 lam = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
13 G = E / (2.0 * (1.0 + nu))
14

15 for i in range(3):
16 for j in range(3):
17 ddsdde[6 * i + j] = lam
18 ddsdde[6 * i + i] += 2.0 * G
19 ddsdde[6 * (i + 3) + (i + 3)] = G

(continues on next page)

1.2. Examples 5

abqcy, Release 0.0.5

(continued from previous page)

20 for i in range(6):
21 for j in range(6):
22 stress[i] += ddsdde[6 * i + j] * dstran[j]

Note: You will need to add the Cython header file (.pxd) along with the Python file (.py) in order to use the Cython
declarations.

1 cdef extern from "<aba_for_c.h>":
2 pass
3

4

5 cdef extern void umat(
6 double *stress, double *statev, double *ddsdde, double *sse, double *spd,
7 double *scd, double *rpl, double *ddsddt, double *drplde, double *drpldt,
8 double *stran, double *dstran, double *time, double *dtime, double *temp,
9 double *dtemp, double *predef, double *dpred, char *cmname, int *ndi,

10 int *nshr, int *ntens, int *nstatv, double *props, int *nprops, double *coords,
11 double *drot, double *pnewdt, double *celent, double *dfgrd0, double *dfgrd1,
12 int *noel, int *npt, int *layer, int *kspt, int *jstep, int *kinc,
13)

Note: This file is required to use the Cython declarations in the Python file (.py).

1.3 Command Line Interface

The abqcy command line is used to compile you Cython code into an object (.obj) file that can be used by Abaqus.
You can use it in the command line or in a Python script with the abqcy.cli.abqcy object (an abqcy.cli.AbqcyCLI
object).

1.3.1 References

The abqcy command

$ abqcy
NAME

abqcy - The ``abqcy`` command-line interface.

SYNOPSIS
abqcy COMMAND

DESCRIPTION
The ``abqcy`` command-line interface.

COMMANDS
COMMAND is one of the following:

(continues on next page)

6 Chapter 1. Table of Contents

abqcy, Release 0.0.5

(continued from previous page)

compile
Compile a Cython script to an Abaqus user subroutine as an object file.

run
Run Abaqus jobs.

The abqcy compile command

$ abqcy compile --help
INFO: Showing help with the command 'abqcy compile -- --help'.

NAME
abqcy compile - Compile a Cython script to an Abaqus user subroutine as an object␣

→˓file.

SYNOPSIS
abqcy compile SCRIPT <flags>

DESCRIPTION
Compile a Cython script to an Abaqus user subroutine as an object file.

POSITIONAL ARGUMENTS
SCRIPT

Type: 'str'
The path to the Cython script to compile.

FLAGS
--exclude=EXCLUDE

Type: Optional['list']
Default: None
When passing glob patterns as ``script``, you can exclude certain module names␣

→˓explicitly by passing them into the ``exclude`` option.
-n, --nthreads=NTHREADS

Type: 'int'
Default: 0
The number of concurrent builds for parallel compilation (requires the␣

→˓``multiprocessing`` module).
--aliases=ALIASES

Type: Optional['dict']
Default: None
If you want to use compiler directives like ``# distutils: ...`` but can only␣

→˓know at compile time (when running the ``setup.py``) which values to use, you can use␣
→˓aliases and pass a dictionary mapping those aliases

-q, --quiet=QUIET
Type: 'bool'
Default: False
If True, Cython won't print error, warning, or status messages during the␣

→˓compilation.
-f, --force=FORCE

(continues on next page)

1.3. Command Line Interface 7

abqcy, Release 0.0.5

(continued from previous page)

Type: 'bool'
Default: False
Forces the recompilation of the Cython modules, even if the timestamps don't␣

→˓indicate that a recompilation is necessary.
-l, --language=LANGUAGE

Type: Optional['str']
Default: None
To globally enable C++ mode, you can pass ``language='c++'``. Otherwise, this␣

→˓will be determined at a per-file level based on compiler directives. This affects␣
→˓only modules found based on file names. Extension instances passed

--exclude_failures=EXCLUDE_FAILURES
Type: 'bool'
Default: False
For a broad 'try to compile' mode that ignores compilation failures and simply␣

→˓excludes the failed extensions, pass ``exclude_failures=True``. Note that this only␣
→˓really makes sense for compiling ``.py`` files which can also be used without␣
→˓compilation.

--annotate=ANNOTATE
Type: 'bool'
Default: True
Whether to generate an HTML file with annotations, by default True.

Additional flags are accepted.
Additional keyword arguments to pass to the ``cythonize`` function.

NOTES
You can also use flags syntax for POSITIONAL ARGUMENTS

The abqcy run command

$ abqcy run --help
INFO: Showing help with the command 'abqcy run -- --help'.

NAME
abqcy run - Run Abaqus jobs.

SYNOPSIS
abqcy run MODEL <flags>

DESCRIPTION
Run Abaqus jobs.

POSITIONAL ARGUMENTS
MODEL

Type: 'str'
The path to the input file or a Python script to create the input file.

FLAGS
-u, --user=USER

Type: Optional['str']
Default: None

(continues on next page)

8 Chapter 1. Table of Contents

abqcy, Release 0.0.5

(continued from previous page)

The name of the user subroutine, if it is a Cython/Pure Python script, it will␣
→˓be compiled to an object file automatically. If a companion ``.pxd`` file is found, it␣
→˓will be copied to the output directory along with the Cython/Pure Python script.

-j, --job=JOB
Type: Optional['str']
Default: None
The name of the job, by default the model name without the extension.

-o, --output=OUTPUT
Type: Optional['str']
Default: None
The path to the output directory, by default the current directory.

-p, --post=POST
Type: Optional['str']
Default: None
The Python script to run after finishing the job to post-process the results. In␣

→˓the output script, a placeholder ``{odb}`` will be replaced with the path to the␣
→˓output database file.

-v, --visualization=VISUALIZATION
Type: Optional['str']
Default: None
The Python script to run after finishing the job to visualize the results.␣

→˓Typically, this script will plot a figure based on the data saved by the post-
→˓processing script.

Additional flags are accepted.
Additional keyword arguments to pass to the ``abaqus`` command to run the job.

NOTES
You can also use flags syntax for POSITIONAL ARGUMENTS

1.4 API Reference

This page contains auto-generated API reference documentation1.

1.4.1 abqcy

Submodules

abqcy.cli

Module Contents

Classes

AbqcyCLI The abqcy command-line interface.

1 Created with sphinx-autoapi

1.4. API Reference 9

https://github.com/readthedocs/sphinx-autoapi

abqcy, Release 0.0.5

Attributes

abqcy

class AbqcyCLI

The abqcy command-line interface.

_update_include_lib()

Update the INCLUDE and LIB environment variables.

compile(script: str, *, exclude: list = None, nthreads: int = 0, aliases: dict = None, quiet: bool = False,
force: bool = False, language: str = None, exclude_failures: bool = False, annotate: bool = True,
**kwargs)

Compile a Cython script to an Abaqus user subroutine as an object file.

Parameters

• script (str) – The path to the Cython script to compile.

• exclude (list, optional) – When passing glob patterns as script, you can exclude cer-
tain module names explicitly by passing them into the exclude option.

• nthreads (int, optional) – The number of concurrent builds for parallel compilation (re-
quires the multiprocessing module).

• aliases (dict, optional) – If you want to use compiler directives like # distutils:
... but can only know at compile time (when running the setup.py) which values to
use, you can use aliases and pass a dictionary mapping those aliases to Python strings
when calling cythonize(). As an example, say you want to use the compiler direc-
tive # distutils: include_dirs = ../static_libs/include/ but this path isn’t
always fixed and you want to find it when running the setup.py. You can then do
distutils: include_dirs = MY_HEADERS, find the value of MY_HEADERS in the
setup.py, put it in a python variable called foo as a string, and then call cythonize(..
., aliases={'MY_HEADERS': foo}).

• quiet (bool, optional) – If True, Cython won’t print error, warning, or status messages
during the compilation.

• force (bool, optional) – Forces the recompilation of the Cython modules, even if the
timestamps don’t indicate that a recompilation is necessary.

• language (str, optional) – To globally enable C++ mode, you can pass
language='c++'. Otherwise, this will be determined at a per-file level based on
compiler directives. This affects only modules found based on file names. Extension
instances passed into cythonize() will not be changed. It is recommended to rather use
the compiler directive # distutils: language = c++ than this option.

• exclude_failures (bool, optional) – For a broad ‘try to compile’ mode that
ignores compilation failures and simply excludes the failed extensions, pass
exclude_failures=True. Note that this only really makes sense for compiling
.py files which can also be used without compilation.

• annotate (bool, optional) – Whether to generate an HTML file with annotations, by
default True.

• kwargs – Additional keyword arguments to pass to the cythonize function.

10 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

abqcy, Release 0.0.5

run(model: str, *, user: str = None, job: str = None, output: str = None, post: str = None, visualization: str =
None, **kwargs)
Run Abaqus jobs.

Parameters

• model (str) – The path to the input file or a Python script to create the input file.

• user (str) – The name of the user subroutine, if it is a Cython/Pure Python script, it will
be compiled to an object file automatically. If a companion .pxd file is found, it will be
copied to the output directory along with the Cython/Pure Python script.

• job (str, optional) – The name of the job, by default the model name without the exten-
sion.

• output (str, optional) – The path to the output directory, by default the current directory.

• post (str, optional) – The Python script to run after finishing the job to post-process the
results. In the output script, a placeholder {odb} will be replaced with the path to the
output database file.

• visualization (str, optional) – The Python script to run after finishing the job to vi-
sualize the results. Typically, this script will plot a figure based on the data saved by the
post-processing script.

• kwargs – Additional keyword arguments to pass to the abaqus command to run the job.

abqcy

abqcy.subs

Module Contents

STANDARD = ['CREEP', 'DFLOW', 'DFLUX', 'DISP', 'DLOAD', 'FILM', 'FLOW', 'FRIC',
'FRIC_COEF', 'GAPCON',...

EXPLICIT = ['VDFLUX', 'VDISP', 'VDLOAD', 'VEXTERNALDB', 'VFABRIC', 'VFRIC', 'VFRIC_COEF',
'VFRICTION',...

subs

abqcy.version

Module Contents

Functions

_get_version() Return the version string used for __version__.

1.4. API Reference 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

abqcy, Release 0.0.5

Attributes

_default_version

__version__

_default_version = '0.0.0'

_get_version()

Return the version string used for __version__.

__version__

12 Chapter 1. Table of Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

13

abqcy, Release 0.0.5

14 Chapter 2. Indices and tables

PYTHON MODULE INDEX

a
abqcy, 9
abqcy.cli, 9
abqcy.subs, 11
abqcy.version, 11

15

abqcy, Release 0.0.5

16 Python Module Index

INDEX

Symbols
__version__ (in module abqcy.version), 12
_default_version (in module abqcy.version), 12
_get_version() (in module abqcy.version), 12
_update_include_lib() (AbqcyCLI method), 10

A
abqcy

module, 9
abqcy (in module abqcy.cli), 11
abqcy.cli

module, 9
abqcy.subs

module, 11
abqcy.version

module, 11
AbqcyCLI (class in abqcy.cli), 10

C
compile() (AbqcyCLI method), 10

E
EXPLICIT (in module abqcy.subs), 11

M
module

abqcy, 9
abqcy.cli, 9
abqcy.subs, 11
abqcy.version, 11

R
run() (AbqcyCLI method), 10

S
STANDARD (in module abqcy.subs), 11
subs (in module abqcy.subs), 11

17

	Table of Contents
	Getting Started
	Installation
	Environment Setup
	Usage
	Compile the Subroutine
	Run an Abaqus Job, Post-process and Visualize the Results in a Single Command

	Examples
	Example: Elastic umat subroutine

	Command Line Interface
	References
	The abqcy command
	The abqcy compile command
	The abqcy run command

	API Reference
	abqcy
	Submodules
	abqcy.cli
	Module Contents
	Classes
	Attributes

	abqcy.subs
	Module Contents

	abqcy.version
	Module Contents
	Functions
	Attributes

	Indices and tables
	Python Module Index
	Index

