
abqcy
Release 0.0.2

WANG Hailin

May 17, 2023

CONTENTS

1 Table of Contents 3

2 Indices and tables 11

Python Module Index 13

Index 15

i

ii

abqcy, Release 0.0.2

Write Abaqus Subroutines in Cython.

• GitHub repository: https://github.com/haiiliin/abqcy

• PyPI: https://pypi.org/project/abqcy

• Documentation: https://abqcy.readthedocs.io

• Read the Docs: https://readthedocs.org/projects/abqcy

• Bug report: https://github.com/haiiliin/abqcy/issues

CONTENTS 1

https://github.com/haiiliin/abqcy
https://pypi.org/project/abqcy
https://abqcy.readthedocs.io
https://readthedocs.org/projects/abqcy
https://github.com/haiiliin/abqcy/issues

abqcy, Release 0.0.2

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Getting Started

abqcy allows you to write your Abaqus subroutines in Cython. It provides a command line tool to compile your Cython
code into an object file (.obj) that can be used by Abaqus.

1.1.1 Installation

You can install abqcy with pip:

pip install abqcy

or install it from source:

pip install git+https://github.com/haiiliin/abqcy

1.1.2 Environment Setup

abqcy requires a working Abaqus installation with user subroutines enabled. Make sure the abaqus command is
available in the command line, otherwise you need to create a new system environment variable ABAQUS_BAT_PATH
and set it to the path of the abaqus.bat file.

abqcy uses Cython to compile your Cython code into a C source file (.c). In order to compile the C source file into
an object file (.obj) that can be used by Abaqus, the abaqus make command is used (it uses the MSVC cl compiler
from Visual Studio). Since the compiled .c file requires the Python headers and libraries, you need to make sure that
the cl compiler can find them. This can be done by setting the INCLUDE and LIB environment variables. If you do
not want to set global environment variables, you can also create a .env file in the directory where you run the abqcy
command.

The following is the information of the INCLUDEenvironment variable on my computer, you need to separate the paths
with ; on Windows and : on Linux:

C:/Users/Hailin/AppData/Local/Programs/Python/Python310/include
C:/Users/Hailin/AppData/Local/Programs/Python/Python310/Lib/site-packages/numpy/core/
→˓include
C:/Program Files (x86)/Microsoft Visual Studio/2019/BuildTools/VC/Tools/MSVC/14.29.30133/
→˓include
C:/Program Files (x86)/Windows Kits/10/Include/10.0.19041.0/shared
C:/Program Files (x86)/Windows Kits/10/Include/10.0.19041.0/ucrt

3

https://cython.org/
https://cython.org/

abqcy, Release 0.0.2

and the following is the information of the LIB environment variable on my computer:

C:/Users/Hailin/AppData/Local/Programs/Python/Python310/libs
C:/Users/Hailin/AppData/Local/Programs/Python/Python310/Lib/site-packages/numpy/core/lib
C:/Program Files (x86)/Windows Kits/10/Lib/10.0.19041.0/um/x64
C:/Program Files (x86)/Windows Kits/10/Lib/10.0.19041.0/ucrt/x64

1.1.3 Usage

You can now write your Abaqus subroutine in Cython, simple scripts can be found in the examples directory.

After you have written your subroutine, you can compile it with the abqcy command:

abqcy compile <path-to-your-subroutine>

This will compile your subroutine into a C source file (.c) and a C header file (.h), and then they will be compiled into
an object file (.obj) that can be used by Abaqus. These files are in the same directory as your subroutine.

Now you can use the subroutine in Abaqus, like:

abaqus job=Job-1 input=model.inp user=your-subroutine.obj

1.2 Command Line Interface

The abqcy command line is used to compile you Cython code into an object (.obj) file that can be used by Abaqus.
You can use it in the command line or in a Python script with the abqcy.cli.abqcy object (an abqcy.cli.AbqcyCLI
object).

1.2.1 References

The abqcy command

$ abqcy
NAME

abqcy - The ``abqcy`` command-line interface.

SYNOPSIS
abqcy COMMAND

DESCRIPTION
The ``abqcy`` command-line interface.

COMMANDS
COMMAND is one of the following:

compile
Compile a Cython script to an Abaqus user subroutine as an object file.

run
Run Abaqus jobs.

4 Chapter 1. Table of Contents

https://github.com/haiiliin/abqcy/tree/main/examples

abqcy, Release 0.0.2

The abqcy compile command

$ abqcy compile --help
INFO: Showing help with the command 'abqcy compile -- --help'.

NAME
abqcy compile - Compile a Cython script to an Abaqus user subroutine as an object␣

→˓file.

SYNOPSIS
abqcy compile SCRIPT <flags>

DESCRIPTION
Compile a Cython script to an Abaqus user subroutine as an object file.

POSITIONAL ARGUMENTS
SCRIPT

Type: 'str'
The path to the Cython script to compile.

FLAGS
--exclude=EXCLUDE

Type: Optional['list']
Default: None
When passing glob patterns as ``script``, you can exclude certain module names␣

→˓explicitly by passing them into the ``exclude`` option.
-n, --nthreads=NTHREADS

Type: 'int'
Default: 0
The number of concurrent builds for parallel compilation (requires the␣

→˓``multiprocessing`` module).
--aliases=ALIASES

Type: Optional['dict']
Default: None
If you want to use compiler directives like ``# distutils: ...`` but can only␣

→˓know at compile time (when running the ``setup.py``) which values to use, you can use␣
→˓aliases and pass a dictionary mapping those aliases

-q, --quiet=QUIET
Type: 'bool'
Default: False
If True, Cython won't print error, warning, or status messages during the␣

→˓compilation.
-f, --force=FORCE

Type: 'bool'
Default: False
Forces the recompilation of the Cython modules, even if the timestamps don't␣

→˓indicate that a recompilation is necessary.
-l, --language=LANGUAGE

Type: Optional['str']
Default: None
To globally enable C++ mode, you can pass ``language='c++'``. Otherwise, this␣

→˓will be determined at a per-file level based on compiler directives. This affects␣
→˓only modules found based on file names. Extension instances passed

(continues on next page)

1.2. Command Line Interface 5

abqcy, Release 0.0.2

(continued from previous page)

--exclude_failures=EXCLUDE_FAILURES
Type: 'bool'
Default: False
For a broad 'try to compile' mode that ignores compilation failures and simply␣

→˓excludes the failed extensions, pass ``exclude_failures=True``. Note that this only␣
→˓really makes sense for compiling ``.py`` files which can also be used without␣
→˓compilation.

--annotate=ANNOTATE
Type: 'bool'
Default: True
Whether to generate an HTML file with annotations, by default True.

Additional flags are accepted.
Additional keyword arguments to pass to the ``cythonize`` function.

NOTES
You can also use flags syntax for POSITIONAL ARGUMENTS

The abqcy run command

$ abqcy run --help
INFO: Showing help with the command 'abqcy run -- --help'.

NAME
abqcy run - Run Abaqus jobs.

SYNOPSIS
abqcy run INPUT USER <flags>

DESCRIPTION
Run Abaqus jobs.

POSITIONAL ARGUMENTS
INPUT

Type: 'str'
The path to the input file.

USER
Type: 'str'
The name of the user subroutine, if it is a Cython/Pure Python script, it will␣

→˓be compiled to an object file automatically.

FLAGS
-j, --job=JOB

Type: Optional['str']
Default: None
The name of the job, by default the current directory name.

-o, --output=OUTPUT
Type: Optional['str']
Default: None
The path to the output directory, by default the current directory.

-s, --script=SCRIPT
(continues on next page)

6 Chapter 1. Table of Contents

abqcy, Release 0.0.2

(continued from previous page)

Type: Optional['str']
Default: None
The Python script to run after finishing the job to post-process the results.

Additional flags are accepted.
Additional keyword arguments to pass to the ``abaqus`` command to make the␣

→˓object file.

NOTES
You can also use flags syntax for POSITIONAL ARGUMENTS

1.3 API Reference

This page contains auto-generated API reference documentation1.

1.3.1 abqcy

Submodules

abqcy.cli

Module Contents

Classes

AbqcyCLI The abqcy command-line interface.

Attributes

abqcy

class AbqcyCLI

The abqcy command-line interface.

compile(script: str, *, exclude: list = None, nthreads: int = 0, aliases: dict = None, quiet: bool = False,
force: bool = False, language: str = None, exclude_failures: bool = False, annotate: bool = True,
**kwargs)

Compile a Cython script to an Abaqus user subroutine as an object file.

Parameters

• script (str) – The path to the Cython script to compile.

• exclude (list, optional) – When passing glob patterns as script, you can exclude cer-
tain module names explicitly by passing them into the exclude option.

1 Created with sphinx-autoapi

1.3. API Reference 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://github.com/readthedocs/sphinx-autoapi

abqcy, Release 0.0.2

• nthreads (int, optional) – The number of concurrent builds for parallel compilation (re-
quires the multiprocessing module).

• aliases (dict, optional) – If you want to use compiler directives like # distutils:
... but can only know at compile time (when running the setup.py) which values to
use, you can use aliases and pass a dictionary mapping those aliases to Python strings
when calling cythonize(). As an example, say you want to use the compiler direc-
tive # distutils: include_dirs = ../static_libs/include/ but this path isn’t
always fixed and you want to find it when running the setup.py. You can then do
distutils: include_dirs = MY_HEADERS, find the value of MY_HEADERS in the
setup.py, put it in a python variable called foo as a string, and then call cythonize(..
., aliases={'MY_HEADERS': foo}).

• quiet (bool, optional) – If True, Cython won’t print error, warning, or status messages
during the compilation.

• force (bool, optional) – Forces the recompilation of the Cython modules, even if the
timestamps don’t indicate that a recompilation is necessary.

• language (str, optional) – To globally enable C++ mode, you can pass
language='c++'. Otherwise, this will be determined at a per-file level based on
compiler directives. This affects only modules found based on file names. Extension
instances passed into cythonize() will not be changed. It is recommended to rather use
the compiler directive # distutils: language = c++ than this option.

• exclude_failures (bool, optional) – For a broad ‘try to compile’ mode that
ignores compilation failures and simply excludes the failed extensions, pass
exclude_failures=True. Note that this only really makes sense for compiling
.py files which can also be used without compilation.

• annotate (bool, optional) – Whether to generate an HTML file with annotations, by
default True.

• kwargs – Additional keyword arguments to pass to the cythonize function.

run(input: str, user: str, *, job: str = None, output: str = None, script: str = None, **kwargs)
Run Abaqus jobs.

Parameters

• input (str) – The path to the input file.

• user (str) – The name of the user subroutine, if it is a Cython/Pure Python script, it will
be compiled to an object file automatically.

• job (str, optional) – The name of the job, by default the current directory name.

• output (str, optional) – The path to the output directory, by default the current directory.

• script (str, optional) – The Python script to run after finishing the job to post-process
the results.

• kwargs – Additional keyword arguments to pass to the abaqus command to make the
object file.

abqcy

8 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

abqcy, Release 0.0.2

abqcy.version

Module Contents

Functions

_get_version() Return the version string used for __version__.

Attributes

_default_version

__version__

_default_version = '0.0.0'

_get_version()

Return the version string used for __version__.

__version__

1.3. API Reference 9

abqcy, Release 0.0.2

10 Chapter 1. Table of Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

11

abqcy, Release 0.0.2

12 Chapter 2. Indices and tables

PYTHON MODULE INDEX

a
abqcy, 7
abqcy.cli, 7
abqcy.version, 9

13

abqcy, Release 0.0.2

14 Python Module Index

INDEX

Symbols
__version__ (in module abqcy.version), 9
_default_version (in module abqcy.version), 9
_get_version() (in module abqcy.version), 9

A
abqcy

module, 7
abqcy (in module abqcy.cli), 8
abqcy.cli

module, 7
abqcy.version

module, 9
AbqcyCLI (class in abqcy.cli), 7

C
compile() (AbqcyCLI method), 7

M
module

abqcy, 7
abqcy.cli, 7
abqcy.version, 9

R
run() (AbqcyCLI method), 8

15

	Table of Contents
	Getting Started
	Installation
	Environment Setup
	Usage

	Command Line Interface
	References
	The abqcy command
	The abqcy compile command
	The abqcy run command

	API Reference
	abqcy
	Submodules
	abqcy.cli
	Module Contents
	Classes
	Attributes

	abqcy.version
	Module Contents
	Functions
	Attributes

	Indices and tables
	Python Module Index
	Index

