

abqcy documentation

Write Abaqus Subroutines in Cython.

	GitHub repository: https://github.com/haiiliin/abqcy

	PyPI: https://pypi.org/project/abqcy

	Documentation: https://abqcy.readthedocs.io

	Read the Docs: https://readthedocs.org/projects/abqcy

	Bug report: https://github.com/haiiliin/abqcy/issues

Table of Contents

Contents

	Getting Started

	Command Line Interface

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

abqcy allows you to write your Abaqus subroutines in Cython [https://cython.org/].
It provides a command line tool to compile your Cython code into an object (.obj) file that can be used by Abaqus.

Installation

You can install abqcy with pip:

pip install abqcy

or install it from source:

pip install git+https://github.com/haiiliin/abqcy

Environment Setup

abqcy requires a working Abaqus installation with user subroutines enabled.
Make sure the abaqus command is available in the command line, otherwise you need to create a new system environment
variable ABAQUS_BAT_PATH and set it to the path of the abaqus.bat file.

abqcy uses Cython [https://cython.org/] to compile your Cython code into a C file.
In order to compile the C file into an object file (.obj) that can be used by Abaqus, the abaqus make command
is used (it uses the cl compiler from Visual Studio). Since the compiled C file requires the Python headers and
libraries, you need to make sure that the cl compiler can find them. This can be done by setting the INCLUDE and
LIB environment variables. If you do not want to set
global environment variables, you can also create a .env file in the directory where you run the abqcy command.

The following is the information of the INCLUDEenvironment variable on my computer, you need to separate
the paths with ; on Windows and : on Linux:

C:/Users/Hailin/AppData/Local/Programs/Python/Python310/include
C:/Users/Hailin/AppData/Local/Programs/Python/Python310/Lib/site-packages/numpy/core/include
C:/Program Files (x86)/Microsoft Visual Studio/2019/BuildTools/VC/Tools/MSVC/14.29.30133/include
C:/Program Files (x86)/Windows Kits/10/Include/10.0.19041.0/shared
C:/Program Files (x86)/Windows Kits/10/Include/10.0.19041.0/ucrt

and the following is the information of the LIB environment variable on my computer:

C:/Users/Hailin/AppData/Local/Programs/Python/Python310/libs
C:/Users/Hailin/AppData/Local/Programs/Python/Python310/Lib/site-packages/numpy/core/lib
C:/Program Files (x86)/Windows Kits/10/Lib/10.0.19041.0/um/x64
C:/Program Files (x86)/Windows Kits/10/Lib/10.0.19041.0/ucrt/x64

Usage

You can now write your Abaqus subroutine in Cython, simple scripts can be found in the
examples [https://github.com/haiiliin/abqcy/tree/main/examples] directory.

After you have written your subroutine, you can compile it with the abqcy command:

abqcy compile <path-to-your-subroutine>

This will compile your subroutine into a .c file and a .h file, and then thye will be compiled into a .obj file
that can be used by Abaqus. These files are in the same directory as your subroutine.

Now you can use the subroutine in Abaqus, like:

abaqus job=Job-1 input=model.inp user=your-subroutine.obj

Command Line Interface

The abqcy command line is used to compile you Cython code into an object (.obj) file that can be used by Abaqus.

References

The abqcy command

$ abqcy
NAME
 abqcy - The ``abqcy`` command-line interface.

SYNOPSIS
 abqcy COMMAND

DESCRIPTION
 The ``abqcy`` command-line interface.

COMMANDS
 COMMAND is one of the following:

 compile
 Compile a Cython script to an Abaqus user subroutine as an object file.

 run
 Run Abaqus jobs.

The abqcy compile command

$ abqcy compile --help
INFO: Showing help with the command 'abqcy compile -- --help'.

NAME
 abqcy compile - Compile a Cython script to an Abaqus user subroutine as an object file.

SYNOPSIS
 abqcy compile SCRIPT <flags>

DESCRIPTION
 Compile a Cython script to an Abaqus user subroutine as an object file.

POSITIONAL ARGUMENTS
 SCRIPT
 Type: 'str'
 The path to the Cython script to compile.

FLAGS
 --exclude=EXCLUDE
 Type: Optional['list']
 Default: None
 When passing glob patterns as ``script``, you can exclude certain module names explicitly by passing them into the ``exclude`` option.
 -n, --nthreads=NTHREADS
 Type: 'int'
 Default: 0
 The number of concurrent builds for parallel compilation (requires the ``multiprocessing`` module).
 --aliases=ALIASES
 Type: Optional['dict']
 Default: None
 If you want to use compiler directives like ``# distutils: ...`` but can only know at compile time (when running the ``setup.py``) which values to use, you can use aliases and pass a dictionary mapping those aliases
 -q, --quiet=QUIET
 Type: 'bool'
 Default: False
 If True, Cython won't print error, warning, or status messages during the compilation.
 -f, --force=FORCE
 Type: 'bool'
 Default: False
 Forces the recompilation of the Cython modules, even if the timestamps don't indicate that a recompilation is necessary.
 -l, --language=LANGUAGE
 Type: Optional['str']
 Default: None
 To globally enable C++ mode, you can pass ``language='c++'``. Otherwise, this will be determined at a per-file level based on compiler directives. This affects only modules found based on file names. Extension instances passed
 --exclude_failures=EXCLUDE_FAILURES
 Type: 'bool'
 Default: False
 For a broad 'try to compile' mode that ignores compilation failures and simply excludes the failed extensions, pass ``exclude_failures=True``. Note that this only really makes sense for compiling ``.py`` files which can also be used without compilation.
 --annotate=ANNOTATE
 Type: 'bool'
 Default: True
 Whether to generate an HTML file with annotations, by default True.
 Additional flags are accepted.
 Additional keyword arguments to pass to the ``cythonize`` function.

NOTES
 You can also use flags syntax for POSITIONAL ARGUMENTS

The abqcy run command

$ abqcy run --help
INFO: Showing help with the command 'abqcy run -- --help'.

NAME
 abqcy run - Run Abaqus jobs.

SYNOPSIS
 abqcy run INPUT USER <flags>

DESCRIPTION
 Run Abaqus jobs.

POSITIONAL ARGUMENTS
 INPUT
 Type: 'str'
 The path to the input file.
 USER
 Type: 'str'
 The name of the user subroutine, if it is a Cython/Pure Python script, it will be compiled to an object file automatically.

FLAGS
 -j, --job=JOB
 Type: Optional['str']
 Default: None
 The name of the job, by default the current directory name.
 -o, --output=OUTPUT
 Type: Optional['str']
 Default: None
 The path to the output directory, by default the current directory.
 -s, --script=SCRIPT
 Type: Optional['str']
 Default: None
 The Python script to run after finishing the job to post-process the results.
 Additional flags are accepted.
 Additional keyword arguments to pass to the ``abaqus`` command to make the object file.

NOTES
 You can also use flags syntax for POSITIONAL ARGUMENTS

API Reference

This page contains auto-generated API reference documentation [1].

	abqcy
	abqcy.__main__

	abqcy.cli

	abqcy.version

[1]
Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

abqcy

Submodules

	abqcy.__main__

	abqcy.cli

	abqcy.version

abqcy.__main__

Module Contents

Functions

	main()

	

	
main()[source] [https://github.com/haiiliin/abqcy/blob/main/abqcy/__main__.py]

	

abqcy.cli

Module Contents

Classes

	AbqcyCLI

	The abqcy command-line interface.

	
class AbqcyCLI[source] [https://github.com/haiiliin/abqcy/blob/main/abqcy/cli.py]

	The abqcy command-line interface.

	
compile(script: str [https://docs.python.org/3/library/stdtypes.html#str], *, exclude: list [https://docs.python.org/3/library/stdtypes.html#list] = None, nthreads: int [https://docs.python.org/3/library/functions.html#int] = 0, aliases: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, quiet: bool [https://docs.python.org/3/library/functions.html#bool] = False, force: bool [https://docs.python.org/3/library/functions.html#bool] = False, language: str [https://docs.python.org/3/library/stdtypes.html#str] = None, exclude_failures: bool [https://docs.python.org/3/library/functions.html#bool] = False, annotate: bool [https://docs.python.org/3/library/functions.html#bool] = True, **kwargs)[source] [https://github.com/haiiliin/abqcy/blob/main/abqcy/cli.py]

	Compile a Cython script to an Abaqus user subroutine as an object file.

	Parameters:

	
	script (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the Cython script to compile.

	exclude (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – When passing glob patterns as script, you can exclude certain
module names explicitly by passing them into the exclude option.

	nthreads (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of concurrent builds for parallel compilation
(requires the multiprocessing module).

	aliases (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If you want to use compiler directives like # distutils: ... but
can only know at compile time (when running the setup.py) which values
to use, you can use aliases and pass a dictionary mapping those aliases
to Python strings when calling cythonize(). As an example, say you
want to use the compiler
directive # distutils: include_dirs = ../static_libs/include/
but this path isn’t always fixed and you want to find it when running
the setup.py. You can then do # distutils: include_dirs = MY_HEADERS,
find the value of MY_HEADERS in the setup.py, put it in a python
variable called foo as a string, and then call
cythonize(..., aliases={'MY_HEADERS': foo}).

	quiet (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, Cython won’t print error, warning, or status messages during the
compilation.

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Forces the recompilation of the Cython modules, even if the timestamps
don’t indicate that a recompilation is necessary.

	language (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – To globally enable C++ mode, you can pass language='c++'. Otherwise, this
will be determined at a per-file level based on compiler directives. This
affects only modules found based on file names. Extension instances passed
into cythonize() will not be changed. It is recommended to rather
use the compiler directive # distutils: language = c++ than this option.

	exclude_failures (bool [https://docs.python.org/3/library/functions.html#bool], optional) – For a broad ‘try to compile’ mode that ignores compilation
failures and simply excludes the failed extensions,
pass exclude_failures=True. Note that this only
really makes sense for compiling .py files which can also
be used without compilation.

	annotate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to generate an HTML file with annotations, by default True.

	kwargs – Additional keyword arguments to pass to the cythonize function.

	
run(input: str [https://docs.python.org/3/library/stdtypes.html#str], user: str [https://docs.python.org/3/library/stdtypes.html#str], *, job: str [https://docs.python.org/3/library/stdtypes.html#str] = None, output: str [https://docs.python.org/3/library/stdtypes.html#str] = None, script: str [https://docs.python.org/3/library/stdtypes.html#str] = None, **kwargs)[source] [https://github.com/haiiliin/abqcy/blob/main/abqcy/cli.py]

	Run Abaqus jobs.

	Parameters:

	
	input (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the input file.

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the user subroutine, if it is a Cython/Pure Python script, it will be compiled
to an object file automatically.

	job (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the job, by default the current directory name.

	output (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the output directory, by default the current directory.

	script (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The Python script to run after finishing the job to post-process the results.

	kwargs – Additional keyword arguments to pass to the abaqus command to make the object file.

abqcy.version

Module Contents

Functions

	_get_version()

	Return the version string used for __version__.

Attributes

	_default_version

	

	__version__

	

	
_default_version = '0.0.0'[source] [https://github.com/haiiliin/abqcy/blob/main/abqcy/version.py]

	

	
_get_version()[source] [https://github.com/haiiliin/abqcy/blob/main/abqcy/version.py#L9-L27]

	Return the version string used for __version__.

	
__version__[source] [https://github.com/haiiliin/abqcy/blob/main/abqcy/version.py]

	

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 abqcy	

 	
 	
 abqcy.__main__	

 	
 	
 abqcy.cli	

 	
 	
 abqcy.version	

Index

 _
 | A
 | C
 | M
 | R

_

 	
 	__version__ (in module abqcy.version)

 	
 	_default_version (in module abqcy.version)

 	_get_version() (in module abqcy.version)

A

 	
 	
 abqcy

 	module

 	
 abqcy.__main__

 	module

 	
 	
 abqcy.cli

 	module

 	
 abqcy.version

 	module

 	AbqcyCLI (class in abqcy.cli)

C

 	
 	compile() (AbqcyCLI method)

M

 	
 	main() (in module abqcy.__main__)

 	
 module

 	abqcy

 	abqcy.__main__

 	abqcy.cli

 	abqcy.version

R

 	
 	run() (AbqcyCLI method)

 nav.xhtml

 Table of Contents

 		
 abqcy documentation

 		
 Getting Started

 		
 Installation

 		
 Environment Setup

 		
 Usage

 		
 Command Line Interface

 		
 References

 		
 The abqcy command

 		
 The abqcy compile command

 		
 The abqcy run command

 		
 API Reference

 		
 abqcy

 		
 Submodules

_static/file.png

_static/minus.png

_static/plus.png

